翻訳と辞書 |
Whitehead's lemma (Lie algebras) : ウィキペディア英語版 | Whitehead's lemma (Lie algebras) In algebra, Whitehead's lemma on a Lie algebra representation is an important step toward the proof of Weyl's theorem on complete reducibility. Let be a semisimple Lie algebra over a field of characteristic zero, ''V'' a finite-dimensional module over it and a linear map such that . The lemma states that there exists a vector ''v'' in ''V'' such that for all ''x''. The lemma may be interpreted in terms of Lie algebra cohomology. The proof of the lemma uses a Casimir element. == References ==
* Jacobson, Nathan, ''Lie algebras'', Republication of the 1962 original. Dover Publications, Inc., New York, 1979. ISBN 0-486-63832-4
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Whitehead's lemma (Lie algebras)」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|